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Influence of the Extratropics to the
Tropical UT & LS

* Along line of studies
— Pierrehmbert et al.
— Waugh and Polvani (2000)
— Focus on lower level (215 hPa 350K)
— RWB as the mechanism
— Winter Maxima (DJF)

* Recent study at the tropical tropopause level
— Konopka et al., 2010
— Role of Asian Monsoon anticyclone
— Summer season (JJA)
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Abstract. Regions of upper tropospheric equatorial west-
erly winds, observed over the Pacific and Atlantic Oceans
during northern fall to spring, are important for extratropical-
tropical interactions. This paper focuses on one feature of
these “westerly ducts” that has received relatively little at-
tention to date: the occurrence of Rossby wave breaking
events that transport tongues of extratropical air deep into
the tropics, mix tropical and subtropical air, and can affect
deep convection. A climatology of these “intrusion” events
formed from 20 years of meteorological analyses shows a
strong dependence on the basic-state flow. Notably, in-
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zonally and amplifying meridionally as it enters the weak
zonal winds north of the Pacific westerly duct (see Figure
la). This leads to the generation of a thin tongue of high
PV intruding into the tropics (Figure le), that lasts 2 days.
As this intrusion decays, another event can be seen begin-
ning upstream (Figure 1f, 220°E). Intrusion events which
transport stratospheric air deep into the tropical UT, such
as the one presented here, are special cases of the more gen-
eral wave breaking events along the subtropical tropopause
examined by Postel & Hitchman [1999)].

Because of their penetration deep into the tropics, intru-
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__(b) PV 970126 350K (c) PV 970128 350K

Figure 1. (a) zonal wind averaged between January 16 and February 14, 1997 (contour interval 10 m/s; negative values shaded).
(b-f) PV on January 26 to February 1, 1997 (PV = (-5, -4, ..., 5) PVU contoured, with |PV|> 2 PVU shaded). All fields are on the

350 K isentrope.
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Figure 2. Histograms showing the number of intrusion events per (a) month, (b) longitude, and (c, d) year (NDJFM winter) for
Pacific and Atlantic events, respectively. Note that in (c) and (d) “80” corresponds to the 1979/80 winter. The solid (unfilled) bars
show northern (southern) hemisphere events. Curves correspond to climatological equatorial zonal winds at 350 K: (a) solid (dashed)
curve is average over the Pacific (Atlantic) ocean, (b) DJF average, (c) average over Pacific, and (d) average over Atlantic.
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[1] The impact of Rossby wave breaking on the subtropical tropopause and intrusions of
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Figure 2. Longitude-time variation of MLS 215 hPa RH at 16.25°N for January—February in 1992,

1993, and 1994. Contours show PV = 1.5 PVU at 17.5°N. White horizontal lines in Figure 2b mark dates
shown in Figure 1.
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Figure 3. Longitude-time variation of AIRS 200-250 hPa (a) RH and (b) O3 mixing ratios at 17.5°N
for January—February in 2004. Contours show PV = 1.5 PVU at 17.5°N.
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Example from KunMing Campaign
Jianchun Bian (IAP/CAS, China), Holger Voemel et al., 2009

T, Wind and Hgt 100 hPa, 20090808 06 UTZ

Asian Monsoon Study

August 2009

KunMing, China (25°N, 102°E )

Ozone and water vapor (CFH)

11 profiles
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Case 2 Extra-Tropical Stratospheric Intrusion

v'Thick dry and high-03 layer in mid-troposphere
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Wind and PV at 150 hPa
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